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Abstract. Path-integral solutions to time-evolution equations in statistical physics have recently
aroused great interest. The main problem in applying these methods is to find a valid propagator in
the short-time regime of evolution. A new method is proposed to obtain a set of accurate short-time
propagators by the construction of a simple auxiliary Fokker–Planck equation. This equation takes
into account the full relevant functional dependence of the original drift and diffusion terms. By
using a suitable decomposition of the drift and diffusion coefficients it is possible to derive a new
representation of the Diracδ-function. From this representation the short-time behaviour of the
solutions is given not only for the infinitesimal time interval, but also for a discrete finite one which
has a more practical numerical sense. This picture leads to accurate short-time propagators which
include the prescribed boundary conditions.

1. Introduction

One of the mathematical models for nonlinear dynamical systems is provided by the Fokker–
Planck equation [1] which arises in many branches of physics. This equation has been the main
tool in dealing with problems in kinetic theory in gases [2,3], lasers, diffusion, deposition and
nucleation processes under Markovian approximations [4,5]. However, the problem of finding
analytical solutions far from the equilibrium remains unsolved in most physical systems of
interest. Numerical methods have attracted great attention and a large number of techniques
have been developed [6–10]. Computational approaches do not always take into account the
essential requirements of time-dependent solutions such as conservation laws and entropy
increase, as well as a suitable representation of some specific boundary conditions [11–13].
Thus, to find proper numerical treatments for solving Fokker–Planck equations an alternative
method based on Green’s functionP has been developed. In this way, the time-evolution
picture of densityf (q, t) reads in aN -dimensional space with definition domainD

f (q, t + τ) =
∫
D
P(q, t + τ |q′, t)f (q′, t)dNq ′. (1.1)

This procedure, also called the path-integral method, assumes the system to be described with
path sums for small time steps [14–25] using an approximate Green function [26] or a short-
time propagatorPτ (q, q′|t) whose functional dependence only needs to be known for a small
evolution timeτ with initial Dirac δ condition forτ = 0.

The short-time propagator is usually reduced to a simple Gaussian probability density
[27–29] providing the conditional probability of finding a particle in positionq in time t + τ
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starting in positionq′ in time t . Nevertheless, this Gaussian short-time propagator fails in
describing the higher moments of the distribution functionf (q, t) and in accounting for
non-natural boundary conditions, even for linear processes. Therefore, the aim of this paper
is to provide a general method to obtain short-time propagators for a given Fokker–Planck
equation. The construction of an auxiliary solvable Fokker–Planck equation in the short-time
regime gives a suitable representation of the Diracδ-function fitted to the original problem.
Because of the non-unique form of such a short-time propagator, it is possible to find a function
Pτ (q, q

′|t) which approximates the unknown exactP(q, t + τ |q, t) in the short-time regime
by an accurate functional dependence inq. Further, second-order corrections in time stepτ

for Pτ may be achieved by an iterative self-adjusting process to ensure the correct evolution
for higher moments of the distributionf .

2. Analytical grounds

The time-evolution equation for distribution functions of any physical system takes the general
form

∂f

∂t
= Lf (q, t) (2.1)

whereL is an integro-differential operator acting onf (q, t) defined in aN -dimensional space
<N over the domainD for the set of macroscopic variables{qi}. The relation between the initial
conditionf (q, 0) and the transientf (q, t) defines the existence of an integral time-evolution
operatorUt,t ′ such that, fort > 0 one has

f (q, t) = Ut,0f0(q) (2.2)

Ut,t ′ is generally an integral operator that satisfies

f = Ut,t ′f (q, t ′) =
∫
D
f (q′, t ′)5(q, t |q′, t ′)dNq ′. (2.3)

The essential properties of the integral kernel5 are determined by the following set of integral
equations [30], also satisfied by the conditional probability in Markovian processes [1]:

lim
t→t ′
Ut,t ′ = I lim

t→t ′
Uτ,t = Uτ,t ′ (2.4)

Ut,t ′ = Ut,t ′′Ut ′′,t ′ t ′ 6 t ′′ 6 t (2.5)

whereI symbolizes the identity integral operator, i.e. the integral kernel5 is reduced to the
Dirac δ-function. Thus fort > t ′′ > t ′ the family of time-dependent propagators{Ut,t ′ }
associated to the operatorL fulfils the relations

lim
t→t ′

5(q, t |q′, t ′) = δ(q − q′) (2.6)

and

5(q, t |q′, t ′) =
∫
D
5(q, t |q′′, t ′′)5(q′′, t ′′|q′, t ′)dNq ′′. (2.7)

The generalL treated in this work refers to the Fokker–Planck operatorLFP

L = LFP (q, t) = − ∂

∂qi

[
Ai(q, t)− ∂

∂qj
Dij (q, t)

]
(2.8)

where the drift and diffusion coefficientsAi andDij may depend on timet and positionq
even through some functional relation on the functionf (q, t). For a great number of physical
problems, the Fokker–Planck equation arises from the analysis of microscopic dynamical
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systems and random processes driven by white or coloured noise. In such a context, the
propagator5 is the conditional transition probabilityP(q, t + τ |q, t) and the integral time
solution (2.7) is called the consistency or Chapman–Kolmogorov equation [1,4]. The problem
of finding P is as difficult as solving the original equation. Nevertheless, the short-time
behaviour of this Green function can be found from first-order time expansion inτ = t − t ′ of
the formal solution

P(q, t |q′, t ′) = δ(q − q′) +
∞∑
n=1

∫ t

t ′
dt1 . . .

×
∫ tn−1

t ′
dtnLFP (q, t1) . . .LFP (q, tn−1)LFP (q, tn)δ(q − q′) (2.9)

usually namedthe Dyson series[1,31], which reduces to the simple form

P(q, t |q′, t ′) = eτLFP (q)δ(q − q′) (2.10)

for time-independent drift and diffusion coefficients. Both formal solutions yield a new
approximate one given by

P(q, t + τ |q′, t) = {1 + τLFP + O(τ 2)}δ(q − q′). (2.11)

Up to second order inτ this asymptotic relation can be rewritten as

P(q, t + τ |q′, t) ' Pτ = eτLFP (q,t)δ(q − q′) (2.12)

because the addition of terms inτ 2 does not lead off this limit, i.e. limτ→0 [1+ατ +O(τ 2)]1/τ =
eα. The approximate propagatorPτ = Pτ (q, q′|t) has been defined to distinguish it from the
true one,P . Note that in the limit of small time(τ → 0) bothP andPτ fall into the function
δ(q − q′). Thus, to solve (2.12) in the short-time regime a suitable representation of theδ-
function is needed. In unboundedN -dimensional spaces this representation is usually provided
through the complex Fourier transform

δ(q − q′) = 1

(2π)N

∫
exp(iK · (q − q′))dNK. (2.13)

The insertion of this relation in (2.12) leads to the well known short-time propagator for a
Fokker–Planck equation forτ > 0:

Pτ = 1

||D′||1/2(4πτ)N/2 × exp

[
−D

′−1
ij (qi − q ′i − A′iτ )(qj − q ′j − A′j τ )

4τ

]
D′ij = Dij (q

′, t) A′i = Ai(q′, t)
(2.14)

which firstly holds for non-singular symmetrical diffusion tensor{Dij } whose determinant
‖D‖ does not vanish. Primes indicate that the coefficients depend on the source—prepoint—
variablesq′ instead of the field—postpoint—variablesq to compute the integration involved
in (1.1). This short time propagator has been derived by direct evaluation of the coefficients
in primed variables and performing all the explicit differentiations inLFP over the integral
kernel in (2.13). This can be made using theδ-function property

G(q)δ(q − q′) = G(q′)δ(q − q′) (2.15)

which is valid bearing in mind the consequent integration. These substitutions mean that
system forces extracted from thoseAi andDij coefficients do not experience a great change
of magnitude during the small evolution timeτ . It is worth saying here that if the derivatives
involved inLFP overAi andDij are performed before their action on the Fourier integral
kernel, the resultingPτ is somewhat different

Pτ = e−τ�(q,t)

||D||1/2(4πτ)N/2 × exp

[
−D

−1
ij (qi − q ′i − τQi)(qj − q ′j − τQj )

4τ

]
(2.16)
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where the functionsQk(q, t) and�(q, t) are

Qk = Ak − 2
∂Dkm

∂qm
� = ∂

∂qk

[
Ak − ∂Dkm

∂qm

]
. (2.17)

This essentially means that the form ofPτ is not unique. Here all the derivatives of
the coefficients are explicitly included in the propagator itself, whereas (2.14) all these
differentiations are included in the representation of theδ-function, as shown in [28]. Between
both propagators there is a wide class of valid ones, all of them being equivalent in the limit
τ → 0. For instance, see the early works [27,28,32–37] and the interesting reports [38,39].

It is worth noting at this stage that the function in (2.16) is not generally normalized to
unity in<N for a finite time stepτ . Then, the basic property of number conservation is violated
in a numerical treatment of integral evolution solution by means of (1.1) if a non-normalized
Pτ is used. For this reason, one does not expect to preserve the correct evolution of the other
higher moments in an integral numerical scheme. Furthermore, both previous propagators
would not normalize for any bounded spaceD ⊂ <N . The reason for this property is easily
understood by paying attention to the Fourier representation of theδ-function which is only
valid in unbounded spaces. A numerically efficient approximantPτ should behave as the exact
P(q, t + τ |q′, t) for small but finite time stepτ . This implies that the essential properties of
the true transition probability have to be included in the short-time approximation. These
properties forPτ are summarized in three respects:

(i) Pτ has to be normalized to unity in the defining regionD i.e.∫
D
Pτ (q, q

′|t)dNq = 1. (2.18)

(ii) In the limit τ → 0 it has to produce the exact first- and second-order moments,Ai andDij ,
of the Kramers–Moyal expansion, being all higher order ones identically null [1, 40, 41]
i.e.Ai(q′, t) = limτ→0

1
τ

∫
D(qi − q ′i )Pτ dNq, 2Dij (q

′, t) = limτ→0
1
τ

∫
D(qi − q ′i )(qj −

q ′j )Pτ dNq.
(iii) It has to satisfy the initial condition

Pτ=0(q, q
′|t) = δ(q − q′). (2.19)

At the same time, a further important condition should be added to the above ones. The
Fokker–Planck equation generally leads to smooth variation of the distribution moments in a
relatively large timescale.

This property means that the exact propagatorP as well as the approximantPτ do not
lead to a non-zero transition density per unit of timeW(q|q′, t). Then, following [4], for all
realε > 0 the limit

lim
τ→0

Pτ (q, q
′|t)

τ
= W(q|q′, t) = 0 (2.20)

has to converge uniformly inq andq′ with |q − q′| > ε.

3. Short-time propagators

Taking into account the previous discussions on the non-uniqueness ofPτ , the problem to
obtain integral transient and stationary solutions forf consists in finding appropriate short-
time propagators. These possiblePτ may be understood as local in time and globally valid in
space coordinates if the essential properties in section 2 are preserved. Restricting our attention
to the possibility of obtaining different representations of theδ-function, the main point is how
to define and construct the one which is adequate for each problem.
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We recall that the way to obtain (2.14) and (2.16) starts by rewriting the formal solution
(2.11) in the form

Pτ = {1 + τLFP + O(τ 2)}δ(q − q′) ' eτL
∗
FP (q,t |q′)δ(q − q′) (3.1)

whereL∗FP (q, t |q′) is a Fokker–Planck-type operator having its coefficients evaluated on
source variablesq′ without their explicit derivatives in the first case. Alternatively, in the
second example all explicit derivatives have been calculated and the coefficients are computed
in field coordinatesq, as said in the previous section. More precisely, the Gaussian propagator
Pτ formally corresponds to the solution of a Fokker–Planck equation for∂Pτ/∂τ with constant
coefficientsAi(q′, t) andDij (q

′, t).
Thus, the starting point to develop an accurate and reliablePτ is to construct an

auxiliary operatorL∗FP from which one can extract the correct momentsAi andDij of the
original equation by means of the properties given in the above sections. By using this
operator one would build a representation of theδ-function in terms of a set of orthogonal
functions{φ(λ, q)}, replacing the usual Fourier transform picture (2.13). Let us consider
the formal short-time solution (3.1), whose factorLFP (q, t)δ(q − q′) is transformed into
L∗FP (q, t |q′)δ(q − q′) with Aiδ andDij δ decomposed as (no summation convection here)

Ai(q, t)δ(q − q′) = ai(q, t |q′)αi(q′, t)δ(q − q′)
Dij (q, t)δ(q − q′) = dij (q, t |q′)βij (q′, t)δ(q − q′).

(3.2)

Then, relation (3.1) may be given as a functional picture of a new operatorL∗FP (q, t |q′) defined
as

L∗FP (q, t |q′) = −
∂

∂qi

[
ai(q, t |q′)αi(q′, t)− ∂

∂qj
dij (q, t |q′)βij (q′, t)

]
. (3.3)

The functionsai anddij are fixed in order to contain in them the physically relevant functional
dependence onq shown by the original coefficients. In this way, the equation

Pτ = eτL
∗
FP (q,t |q′)δ(q − q′) (3.4)

may be understood as the formal solution of an auxiliary Fokker–Planck equation

∂Pτ

∂τ
= L∗FPPτ (q, τ |q∗, 0) (3.5)

wheret as well asq′ are treated as constant parameters. The notation(q, t |q′) means that the
referred functions may depend on prepoint and postpoint variablesq′ andq. Obviously, this set
of factorizations is only a guiding way to construct an auxiliary Fokker–Planck operator. The
resulting equation should be solved under the prescribed conditions of the original problem.
This is to say that boundary conditions and the asymptotic characteristic functional behaviours
of Ai andDij can be collected in theδ representation through the new functionsαi and
βij . Thus, not only are the coefficients derivatives totally or partially included in theδ

representation [28], but also their functional asymptotic behaviours may be included. The
set of factors provided through (3.2) generates, at most,N2 + N new coefficientsdij andai ,
in substitution to the originalAi(q′, t) andDij (q

′, t) in (2.14) to obtain a generalized form of
this common short-time propagator. Note that if the trivial definitionsαi = 1, βij = 1 and
ai = Ai(q′, t), dij = Dij (q

′, t) are used, from (3.5) we recover the usual propagator (2.14)
in unbounded spaces. In this case, under specified boundary conditions, the solution of (3.5)
gives a suitable form ofPτ , valid for small and finite time stepτ in bounded spaces.

A special ansatz for the auxiliary functions is provided by settingβij = 1. Eachdij (q, t |q′)
will then coincide withDij (q

′, t). Therefore, in (3.5) the diffusion tensor is evaluated at source
points. Since the contribution of diffusion processes to time evolution is usually slower than
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convective effects, these definitions may be chosen for many problems of physical relevance.
DefiningN new functionsai such that all factorsAiδ are rewritten as

Ai(q, t)δ(q − q′) = α̃i(q′, t)ai(q, t |q′)δ(q − q′) (3.6)

the auxiliary problem is reduced to an ordinary Fokker–Planck equation for the operator

L∗FP =
∂

∂qi

[
α̃i(q

′, t)ai(q, t |q′)−Dij (q
′, t)

∂

∂qj

]
. (3.7)

Under this choice, (3.5) may be reduced to a simple solvable Fokker–Planck equation in a
new set ofN properly scaled coordinates{v} in such a way thatvk = qk/α̃k. The new drift
vector coincides withai = ai(v) and the new constant diffusion coefficients are given by
dij = Dij (q

′, t)/(α̃i α̃j ). Using the well known methods of solution one can extract from this
equation aδ representation as the limit

δ(q − q′) = lim
q∗→q′

δ(q − q∗) = lim
q∗→q′

∫
φ(q, λ)φ(q∗, λ)dNλ (3.8)

in terms of orthogonal functions{φ(q, λ)}, if this limit exits. The insertion of this representation
in (3.1) will give a new form forPτ . However, the way to obtainPτ is just to solve (3.5) with
the initial conditionδ(q − q∗) before proceeding to the limitq∗ → q′.

This method has already been sucessfully applied in previous works related to the kinetic
equation appearing in plasma physics [22, 23]. To illustrate the procedure let us consider the
nonlinear Fokker–Planck equation for the dynamics of electrons in one component plasma,
which is quadratic in the distributionf for isotropic velocity space. The drift and diffusion
coefficients depend only on the radial spherical coordinatev. Following (3.6) they may be
factorized as [22]

Av(v, t)δ(v − v′) =
[

2

v
− vα(v′, t)

]
Dvv(v

′, t)δ(v − v′)
Dvv(v, t)δ(v − v′) = Dvv(v

′, t)δ(v − v′)
(3.9)

whereav(v, t |v′) = (2/v− vα(v′, t)). The termsα(v′, t) = (2/v′ −Av(v′, t)/Dvv(v
′, t))/v′,

as well asDvv(v
′, t), are bounded and sufficiently smooth functions. Thus, the problem is

reduced to a radial Ornstein–Uhlenbeck process in spherical coordinates. (3.5) is solved under
reflecting conditions at the originv = 0. Note that the geometrical drift factor depending on
2/v has been kept in field variables. This dependence is an essential feature of the Fokker–
Planck equation in spherical coordinates for anyAi,Dij . By direct application of (3.1) the
auxiliary equation is solved in terms of Laguerre polynomials in [22] finding both transient
and steady states by numerical computation for any initial conditionf0.

Note that the common propagator (2.14) containing the drift and diffusion coefficients
computed at source variables fails over the region on which these functions diverge. For
instance, consider the previous one-dimensional process for which theA(q = v) behaves as
2/q in the neighbourhood of the origin. This means that the deterministic force exerted on
a test particle in positionq ′ ' 0 will strongly drive it to a positionq > 0 with a non-zero
probabilityP . Looking at (2.14) one observes that for a particle inq ′ ' 0 the propagator
Pτ vanishes for any finiteτ becauseA(q ′) diverges. This would mean that the probability of
finding such a particle in positionq > 0 after timeτ would be zero, in clear contradiction with
the expected behaviour. This unphysical result has been solved by keeping the relevant factor
2/v in source variables.

On account of this example, it is worth emphasizing that under changes of variables the
geometrical induced drift has to be computed in field coordinates since they directly set up
the boundary conditions for the main problem. At the same time, note that if the convective
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functionsAi contain explicitly the geometrical induced factor 1/|q′| (2.14) would not be
applicable for a finiteτ because of the singularity at the origin, as said before. Therefore,
if 1/|q′| is preserved in source variables, the essential property of smooth behaviour in the
small region for the forces is destroyed under such singularity. So it is desirable to directly
place these conflictive functional asymptotic dependences on theδ representation, ensuring
the smooth functions to appear in source variables.

On the other hand, it must be emphasized that one of the main advantages of this picture
is the fact that after solving (3.5) all the properties (2.18)–(2.20) are fully satisfied sincePτ is
also a solution of a Fokker–Planck equation.

This kind of auxiliary equation may be solved by reduction to an eigenvalue problem [1].
Since there are a great variety of analytical solutions of simple Fokker–Planck equations in the
literature, it is expected that a suitable choice ofα̃j would provide a convenient functionPτ
applicable to the original equation.

In many physical systems of interest using curvilinear coordinates the common situations
depicted in previous paragraphs can be achieved by using the representation

δ(q − q ′) = q g(q)
g(q ′)

×
∫ ∞

0

[
q

q ′

]µ
Jµ(λq)Jµ(λq

′)λ dλ (3.10)

for the radial contribution toδ(q − q′) in terms of Bessel functions [42–44]Jµ of order
µ. The functiong(q) is chosen in accordance with the factorizations (3.2) definingL∗FP .
Particular attention deserves the reduction of (2.12) to anN -dimensional Ornstein–Uhlenbeck
process [1, 45] ifα̃k = −γk(q′, t)qk which solves the problem even for bounded spaces. In
other words, the selection of the auxiliary equation does not imply a practical limitation on the
determination ofPτ (q, q′|t). Moreover, the fitness of the propagator has to be made in such
a way that the resulting auxiliary problem drastically simplifies all the calculations by using
well known analytical results [46–51].

At this point it must be remarked that this procedure may lead to a formal solutionPτ
validated for small and finite evolution time, even in the case of singular diffusion matrix for
which (2.14) fails, see the alternate method given in [38]. If the determinant‖D‖ vanishes it
is possible to derive another expression replacing the Gaussian (2.14) by a convenient choice
of factorization functionsβij that would eventually provide an analytical solvable functionPτ
from (3.5).

4. Numerical evaluation

The time evolution of the initial distributionf (q, 0) = f0 is provided through (1.1). For a total
time of evolutiontn = nτ the functionf (q, tn + τ) = f n+1 is given as the iterative evolution
equation

f n+1(q) =
∫
D
Pτ (q, q

′|tn)f n(q′)dNq ′. (4.1)

where the integration can be carried out using any of the well known numerical schemes.
However, it is convenient to define a transition matrixQn which determinesf n+1 from f n.
For time-independentA andD the matrixQn has to be computed only at the first time step.
A simple rectangle rule for numerical integration scheme leads to a discrete transition matrix
whose elementsQn

ij are understood as a transition probability process in discrete variables.
Once theN points discretized spatial grid{qi} with length1q is fixed, this matrix can be
constructed by a simple procedure as (in the one-dimensional case)

Qn
ij = Pτ (qi, qj |nτ)

1q

Nr(j)
(4.2)
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wherePτ (q, q ′|t) is computed int = nτ , q = qi andq ′ = qj . The numerical functionNr(j)
has to be chosen to ensure the numerical normalization ofPτ such that∑

i

Pτ (qi, qj |t)1q =
∑
i

Qn
ij = 1 (4.3)

which also ensures the constant norm off n and its positiveness at any timetn. If Pτ is
normalized to unity, one expectsNr(j) not to deviate too much from this value. This numerical
value may be used to check the accuracy of the numerical integration scheme. For this reason,
Nr only corrects the truncation numerical errors and makes the discrete and continuous schemes
equivalent. In the limitτ → 0, eachQn

ij approach theδ Kronecker functionδij in agreement
with (2.19) for the continuous case. By increasing the value ofτ , the number of non-zero
elements of the transition matrix increases. Thereby this matrix will have at leastN non-zero
elementsQii = 1/1q for τ = 0 andN(2k + 1) non-null coefficients for a finite time step.k
is fixed after computing the number of non-vanishing elements providing a finite value ofPτ .
For the transition from pointqi to qj , the indexj takes the values laying fromjmin = i − k to
jmax = i + k. This reduces the computation time for the evaluation of (4.1) as

f n+1
i =

j=jmax∑
j=jmin

Qn
ijf

n
j . (4.4)

Because all elements ofQn are bounded and satisfy (4.3), any initial distribution functionf0

yields the numerical positive functionf n which also behaves as a distribution function in the
same sense asf0. For this reason, the integral method becomes numerically stable under any
selection of discretization factorsτ and1q.

In relation to the convergence of the numerical solution, note that formal expression (3.1)
for the auxiliaryL∗FP operates overf (q, t) through a propagator whose dependence onτ can
be essentially described as 1/

√
τ exp[−K2/τ ]. Thus, for the functionalK = K(q; q′, t) 6= 0

the term [τL∗FP ]nPτ originates a set of factors exp[−K2/τ ]/[τn
√
τ ], identified with the rest

O(τ n). All these factors decay to zero faster than any power ofτ . The numerical scheme is
then expected to approach any transient solution under a more precise functional form than the
one provided by finite-difference schemes. In many physical systems there is more than one
conserved quantity during time evolution. In fact, there may be three collisional invariants—
numbern0, momentumP and energyT—as occurs in the Fokker–Planck equation in plasma
physics. To preserve conservation laws or the predicted evolution of the distribution moments,
one may again use the non-uniqueness form ofPτ to improve the matrixQn by adding suitable
second-order corrections inτ to its characteristic mean and variance. A way to achieve this
goal is to perform the effective drift, say for exampleA(q ′) = A(qj ) which appears in the
mean of (2.14), using a recursive parameterψn(τ

2). This parameter can be computationally
adjusted by direct evaluation or by a recursion procedure such as

ψn = ψn−1 +C(T − Tn) (4.5)

which minimizes the difference between exact momentT and the numericalTn in the nth
iteration forC 6= 0. The initial valueψ0 may be zero ifψn is added toA, or ψ0 = 1 if A
is moved toAψn as shown in [22, 23]. Note that this procedure leads to the contribution of
terms of higher order thanτ added to any short-time propagator, meaning that the appropriate
Fokker–Planck equation can be reproduced from it ([16]). This contribution in no way destroys
the consistency with the original problem if it is ensured thatψn is a correction of orderτm

with m > 2.
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Figure 1. Ornstein–Uhlenbeck process in(0,∞). (a) First five iterations with time step
τ = 0, 05 = tr /10 and1q = 6

201. Dots mean steady analytical solution. (b) Evolution of
integral solutionfi in time stepsn = 100, 400, 800 and 1000.

5. Examples

This section illustrates the above algorithm with some representative problems (for physical
applications related to plasma physics see [22,23]).

As a first example, an Ornstein–Uhlenbeck process is treated in the interval(0,∞) under
reflecting boundary conditions atq = 0. Secondly, a nonlinear Fokker–Planck equation which
is quadratic onf is solved. Both numerical integral solutions are compared with analytical
and Crank–Nicholson [52,53] finite-difference solutions.

For the Ornstein–Uhlenbeck case, the drift and diffusion coefficients areA = −γ v (v > 0)
andD, whereγ andD are real positive constants. Under reflecting boundary conditions, the
probability currentJ for the exact propagatorP vanishes atv = 0 and forv→∞, i.e.

J = AP − ∂

∂v
DP = 0 if v→ 0 or v→∞ (5.1)

which ensures the number conservation. The analytical transition probabilityP is (for
γ = 1,D = 1)

P(v, t |v′t ′) = 1√
πy
{e− (v−zv′)2

y + e−
(v+zv′)2

y } (5.2)

z = e−(t−t
′) y = 1− z2 (5.3)

which provides the time evolution of any initial distributionf0(v)and the steady-state Gaussian
solutionfs =

√
2/π exp(−v2/2). To solve this problem through a numerical integral approach

the short-time propagator (2.14) becomes useless since it is not normalized to unity in(0,∞).
The difficulty is avoided if the auxiliary Fokker–Planck equation (3.5) is solved by setting
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Figure 2. Numerical integralfi (a) and exactfe (b) solutions of non-Markovian Fokker–Planck
equation (5.5) forγ = 0. The total evolution time ist = 1 the time step beingτ = 0.1. The
dashed line represents the initial histogram-type distribution function. Frames (c) and (d) show
the distribution tails behaviours for finite-differencefd (circles), integralfi (marks) and exactfe
(line) solutions. Last two frames give the moments evolutions which coincide with the exact ones
within an error of order±10−4%.

A(v)δ(v − v′) = A(v′)δ(v − v′), preserving the reflecting boundary condition. The solution
for Pτ reads [14,48]

Pτ (v, , v
′|t) = e−A(v−v

′−Aτ/2)/2
√

4πτ
× [e−

(v−v′)2
4τ + e−

(v+v′)2
4τ ] − |A|

2
eAv erfc

[
v + v′ +Aτ

2
√
τ

]
(5.4)

where erfc[u] is the complementary error function [44] andA = −v′. In spite of (5.4) showing
a more involved form than the real propagator for this simple problem, it can be used to solve
any related Fokker–Planck equation under the same boundary conditions. The numerical
solution is shown in figure 1 with an initial histogram-type distributionf0. The behaviour of
the numerical integral solution is the same as observed for the analyticalf at any point of the
spatial grid. The relaxation timetr = 1 sets the timescale for which the first momentp of
f decays a factor 1/e. In the numerical integral scheme a relatively large time stepτ may
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Figure 2. (Continued)

be used. In fact, the method works better for largeτ not exceedingtr/3. This feature means
that the integral scheme provides the stationary solution in a very small number of iterations,
although the number of non-zero elements inQ increases notably.

The second problem solved in this section refers to a kind of nonlinear Fokker–Planck
equation which appears for the macroscopic description of generalized Langevin equations
[54, 55]. For such stochastic representations, under the assumption of coloured noise and
induced memory effects for random variables [56–58] a Fokker–Planck equation may be
derived for macroscopic variables. In this equation the effective drift termA depends on
the distributionf itself, providing a non-Markovian picture of such processes. In this case,
the propagatorP generally depends on the full history of the system through the initialf0 and,
only sometimes does a steady-state distribution exits independent of initial conditions. In this
sense, the equation

∂f

∂t
= − ∂

∂q

[
−γ q − λf − ∂

∂q
D0

]
f (q, t) (5.5)

with constant diffusionD = D0 represents a modified Ornstein–Uhlenbeck process including
a self-consistent force−λf . This problem can be solved analytically. Following [56], the
integral expression similar to the Hopf–Cole transform (in dimensionless form withD0 = 1
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Figure 3. Integralfi (a) and exactfe (b) solutions for (5.5) forγ = 1, evolution timet = 2 and
τ = 0.01 in 200 time steps. Forτ = 0.1 the evolution is reduced to only 20 time steps providing
practically the same figures. Frames (c) and (d) give the numerical momentsPn andTn. Analytical
moments differ less than 10−4%.

andλ = 1)

Q(q, t) = exp

[
γ

2
q2 +

∫ q

−∞
f (u, t)du

]
f (q, t) = ∂

∂q
ln[Q(q, t)e−

γ

2 q
2
]

(5.6)

leads to a new Fokker–Planck equation inQ associated with a non-normalizable Ornstein–
Uhlenbeck process with inverted potentialA = γ v [1]

∂Q

∂t
= − ∂

∂q

[
γ q − ∂

∂q

]
Q(q, t) (5.7)

whose Green functionPou(q, t |q ′, 0) is obtained from the the ordinary solutionP relative to
a simple Ornstein–Uhlenbeck process by changingγ into−γ . The functionQ(q, t) is then
derived fromQ(q, 0) throughPou. Thus, after some algebra, the solution to (5.5) for any real
γ reads

f (q, t) = γ z

z2 − 1

∫∞
−∞(q

′ − zq)eG(q,q ′)dq ′∫∞
−∞ eG(q,q ′)dq ′

(5.8)
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Figure 3. (Continued)

wherez = eγ t . The integral kernelG(q, q ′) is given by

G(q, q ′) =
∫ q ′

−∞
f (u, 0)du− γ

2

q ′ − zq
1− z2

. (5.9)

For a positiveγ in the limit of large values of timet (5.8) becomes independent of the initial
f0 giving the stationary solution

fs(q) =
√

2γ

π

e−γ q
2/2

(e + 1)/(e− 1) + erf(q
√
γ

2 )
. (5.10)

For an initial histogram-type distributionf0 the problem has been solved using a short-time
propagatorP ∗τ derived from the identification

A(q, t)δ(q − q ′) = −[γ q + f (q ′, t)]δ(q − q ′). (5.11)

The associated auxiliary Fokker–Planck equation (3.5) is again related to the linear Ornstein–
Uhlenbeck case with convective parametera = −γ q−a0 for constanta0. Thus, the short-time
propagatorP ∗τ is then a simple Gaussian with meanq given by

q = q ′e−γ τ + f (q ′, t)(1− e−γ τ )/γ (5.12)
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and varianceσ suchσ 2 = 2D/γ (1−exp(−2γ τ)). Note that this expression for the propagator
is reduced to the usual one-dimensional (2.14) for small values ofγ τ,which is also an accurate
propagator for this problem ifτ is no larger than 10% of the relaxation timetr = 1/γ . Note
that if P ∗τ is used for anyτ , even forτ →∞, thenth advanced functionf n is always a well
behaved function in the theory of distributions sense. The numerical stability, figure 3, of the
advanced scheme is then ensured even for very large values ofτ, as can be seen through the
moments evolution—figure 3(c) and (d)—reaching the stationary expected behaviour.

For γ = 0 (figure 2) no stationary solution exits. However, the distributionf (q, t) is
advanced untilt = 1 in only ten time steps in a very accurate approximation, as can be shown
through the analysis of the distribution tails in frames (c) and (d). For large values ofq the
integral solutionfi behaves better than the finite-difference solutionfd . It is also shown that
moments evolution in the integral scheme is quite close to the exact one.
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[24] Garćıa-Olivares A and Mũnoz A 1994Math. Comput. Simul.3617
[25] Batista C D, Drazer G, Reidel D and Wio H S 1996Phys. Rev.E 5486
[26] Barton G 1989Elements of Green’s Functions and Propagation(Oxford: Clarendon)
[27] Weiss U 1978Z. Phys.B 24429
[28] Wissel C 1979Z. Phys.B 35185
[29] Drozdov A N and Morillo M 1996Phys. Rev. Lett.775324
[30] Łuczka J, Niemiec M and Piotrowski E 1993J. Math. Phys.345357
[31] Dyson F J 1949Phys. Rev.75486
[32] Dekker H 1976PhysicaA 85363



Short-time propagators for nonlinear Fokker–Planck equations 3695

[33] Dekker H 1976PhysicaA 85598
[34] Haken H 1976Z. Phys.B 24321
[35] Haken H and Mayer-Kress G 1981Z. Phys.B 43185
[36] Graham R 1977Z. Phys.B 26281
[37] Deininghaus U and Graham R 1979Z. Phys.B 34211
[38] Drozdov A N 1993PhysicaA 196158
[39] Drozdov A N 1993PhysicaA 196283
[40] Pawula R F 1967Phys. Rev.162186
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