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Abstract. Path-integral solutions to time-evolution equations in statistical physics have recently
aroused great interest. The main problem in applying these methods is to find a valid propagator in
the short-time regime of evolution. A new method is proposed to obtain a set of accurate short-time
propagators by the construction of a simple auxiliary Fokker—Planck equation. This equation takes
into account the full relevant functional dependence of the original drift and diffusion terms. By
using a suitable decomposition of the drift and diffusion coefficients it is possible to derive a new
representation of the Dira&function. From this representation the short-time behaviour of the
solutions is given not only for the infinitesimal time interval, but also for a discrete finite one which
has a more practical numerical sense. This picture leads to accurate short-time propagators which
include the prescribed boundary conditions.

1. Introduction

One of the mathematical models for nonlinear dynamical systems is provided by the Fokker—
Planck equation [1] which arises in many branches of physics. This equation has been the main
tool in dealing with problems in kinetic theory in gases [2, 3], lasers, diffusion, deposition and
nucleation processes under Markovian approximations [4,5]. However, the problem of finding
analytical solutions far from the equilibrium remains unsolved in most physical systems of
interest. Numerical methods have attracted great attention and a large number of techniques
have been developed [6—10]. Computational approaches do not always take into account the
essential requirements of time-dependent solutions such as conservation laws and entropy
increase, as well as a suitable representation of some specific boundary conditions [11-13].
Thus, to find proper numerical treatments for solving Fokker—Planck equations an alternative
method based on Green'’s functidghhas been developed. In this way, the time-evolution
picture of densityf (g, t) reads in av-dimensional space with definition domdin

Flgt+0) = / P(q.1+7lq. 0 f(q.Dd"q. (1.1)
D

This procedure, also called the path-integral method, assumes the system to be described with
path sums for small time steps [14—25] using an approximate Green function [26] or a short-
time propagatof, (g, q'|t) whose functional dependence only needs to be known for a small
evolution timer with initial Dirac § condition forr = 0.

The short-time propagator is usually reduced to a simple Gaussian probability density
[27-29] providing the conditional probability of finding a particle in positipm time + ¢
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starting in positiong’ in time . Nevertheless, this Gaussian short-time propagator fails in
describing the higher moments of the distribution functity, r) and in accounting for
non-natural boundary conditions, even for linear processes. Therefore, the aim of this paper
is to provide a general method to obtain short-time propagators for a given Fokker—Planck
equation. The construction of an auxiliary solvable Fokker—Planck equation in the short-time
regime gives a suitable representation of the Dé-dianction fitted to the original problem.
Because of the non-unique form of such a short-time propagator, it is possible to find a function
P.(q, ¢'|t) which approximates the unknown exaetq, t + tlq, t) in the short-time regime

by an accurate functional dependenceinFurther, second-order corrections in time step

for P, may be achieved by an iterative self-adjusting process to ensure the correct evolution
for higher moments of the distributiofi.

2. Analytical grounds

The time-evolution equation for distribution functions of any physical system takes the general
form
af

S =rf@n (2.1)

where, is an integro-differential operator acting ¢giiq, ¢) defined in av-dimensional space
RN over the domaim for the set of macroscopic variablgs). The relation between the initial
condition f (g, 0) and the transienf (q, r) defines the existence of an integral time-evolution
operatoi/; » such that, for > 0 one has

f(q, 1) = U ofo(q) (2.2)
U, is generally an integral operator that satisfies
f=tofa) = [ £@. O 0d . 2.3)
D

The essential properties of the integral kerfiedre determined by the following set of integral
equations [30], also satisfied by the conditional probability in Markovian processes [1]:

im, =7  limUe, =Us, (2.4)
t—>t' t—t'
Upy = Uy Uy y 1<t <t (2.5)

whereZ symbolizes the identity integral operator, i.e. the integral keFhéd reduced to the
Dirac s-function. Thus fort > ¢’ > ¢’ the family of time-dependent propagatdts , }
associated to the operat6ifulfils the relations

lim T(q, 11q', 1) = 8(q — ¢) (2.6)
and
M(q,tlq, 1) = / T(q,tlq",t")T(q", t"|q, t)d"q". (2.7)
D

The general treated in this work refers to the Fokker—Planck operates

0 a
g g,
where the drift and diffusion coefficient$; and D;; may depend on time and positiong

even through some functional relation on the functfag, ¢). For a great number of physical

problems, the Fokker—Planck equation arises from the analysis of microscopic dynamical
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systems and random processes driven by white or coloured noise. In such a context, the
propagatorl is the conditional transition probability (g, ¢ + t|q, t) and the integral time
solution (2.7) is called the consistency or Chapman—Kolmogorov equation [1,4]. The problem
of finding P is as difficult as solving the original equation. Nevertheless, the short-time
behaviour of this Green function can be found from first-order time expansiog=im — ¢’ of

the formal solution

Pa.1ld.1) = 8(q - q)+2/ i .

[
<[ d Ler(@. ). Len(a i Ler(@. 005G~ ) (2.9)
v
usually namedhe Dyson seriefl, 31], which reduces to the simple form
P(q,11q, 1) = €47 P5(q — ¢') (2.10)

for time-independent drift and diffusion coefficients. Both formal solutions yield a new
approximate one given by

P(g,t+7lg, 1) = {1+tLpp + O(r%)}8(q — q). (2.11)
Up to second order im this asymptotic relation can be rewritten as
P(g.1+7lq, 1) > P = e 475(q — ¢) (2.12)

because the addition of termsifidoes not lead off this limit, i.e. lig, o [1+a T +O(t?)]Y* =

€. The approximate propagatér = P.(q, q’|t) has been defined to distinguish it from the
true one,P. Note that in the limit of small timéz — 0) both P and P, fall into the function

3(q — q'). Thus, to solve (2.12) in the short-time regime a suitable representation &f the
functionis needed. In unboundaddimensional spaces this representation is usually provided
through the complex Fourier transform

N 1 H . ) N
5(q—q)——(2n)N/eXp(lK (g —q))d"K. (2.13)

The insertion of this relation in (2.12) leads to the well known short-time propagator for a
Fokker—Planck equation far > O:

1 Xp[_ D Mg — g — Aj)(g; — 4 — A}r)}

b = D@ e <€ 4
Dj; = Dij(¢, 1) Al =Ai(d.1)
which firstly holds for non-singular symmetrical diffusion tengdr;;} whose determinant
||D|| does not vanish. Primes indicate that the coefficients depend on the source—prepoint—
variablesq’ instead of the field—postpoint—variabledo compute the integration involved
in (1.1). This short time propagator has been derived by direct evaluation of the coefficients
in primed variables and performing all the explicit differentiationd.ipr over the integral
kernel in (2.13). This can be made using 8hfinction property

G(@)8(g—q) = G(d)é(a—¢q) (2.15)
which is valid bearing in mind the consequent integration. These substitutions mean that
system forces extracted from thodeand D;; coefficients do not experience a great change
of magnitude during the small evolution time It is worth saying here that if the derivatives

involved in Lrp over A; and D;; are performed before their action on the Fourier integral
kernel, the resulting; is somewhat different

e Q@D [ D Mg — g/ —TQi)(q; — 4} — er)}
xp| —

(2.14)

(2.16)

Pp=——  _xe
|| D||Y/2(4m )N/ 4t
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where the function®),(q, ) andQ2(q, t) are

0 D Q- KA [Ak B aka].
9Gm Gy dGm
This essentially means that the form &f is not unique. Here all the derivatives of
the coefficients are explicitly included in the propagator itself, whereas (2.14) all these
differentiations are included in the representation obtfienction, as shown in [28]. Between
both propagators there is a wide class of valid ones, all of them being equivalent in the limit
7 — 0. For instance, see the early works [27, 28, 32—-37] and the interesting reports [38, 39].

It is worth noting at this stage that the function in (2.16) is not generally normalized to
unity in RY for a finite time step. Then, the basic property of number conservation is violated
in a numerical treatment of integral evolution solution by means of (1.1) if a non-normalized
P, is used. For this reason, one does not expect to preserve the correct evolution of the other
higher moments in an integral numerical scheme. Furthermore, both previous propagators
would not normalize for any bounded spaeec Y. The reason for this property is easily
understood by paying attention to the Fourier representation df-thection which is only
valid in unbounded spaces. A numerically efficient approxinfarghould behave as the exact
P(q,t +t|q,t) for small but finite time step. This implies that the essential properties of
the true transition probability have to be included in the short-time approximation. These
properties forP, are summarized in three respects:

Or=Ar—2 (2.17)

(i) P, has to be normalized to unity in the defining regidn.e.

/ P.(q,q'|Hd"g = 1. (2.18)
D

(i) Inthelimit = — 0Oithas to produce the exact first- and second-order moménasidD; ;,
of the Kramers—Moyal expansion, being all higher order ones identically null [1, 40, 41]
ie.Ai(q, 1) = |imrao%fp(6]5 —q))P,dg, 2D;;(q', 1) = Iimrﬁo%fp(qi —q)(q; —
q;)P.d"q.

(iii) It has to satisfy the initial condition

Pr—o(q. q'|t) =8(q — q)). (2.19)

At the same time, a further important condition should be added to the above ones. The
Fokker—Planck equation generally leads to smooth variation of the distribution moments in a
relatively large timescale.

This property means that the exact propagadtaas well as the approximart, do not
lead to a non-zero transition density per unit of titiég|q’, r). Then, following [4], for all
reale > 0 the limit

. P.(q,q|t
im T(qql):
T

t—0

has to converge uniformly ig andq’ with |g — ¢'| > €.

Wi(qlq,t) =0 (2.20)

3. Short-time propagators

Taking into account the previous discussions on the non-uniqueneRs tfe problem to

obtain integral transient and stationary solutions foconsists in finding appropriate short-

time propagators. These possilflemay be understood as local in time and globally valid in
space coordinates if the essential properties in section 2 are preserved. Restricting our attention
to the possibility of obtaining different representations oféfanction, the main point is how

to define and construct the one which is adequate for each problem.
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We recall that the way to obtain (2.14) and (2.16) starts by rewriting the formal solution
(2.11) in the form

P, ={1+tLpp+0(1)})8(q — ¢) = eLrr@15(q — ¢) (3.1)

where L7, (g, t|q") is a Fokker—Planck-type operator having its coefficients evaluated on
source variableg’ without their explicit derivatives in the first case. Alternatively, in the
second example all explicit derivatives have been calculated and the coefficients are computed
in field coordinateg, as said in the previous section. More precisely, the Gaussian propagator
P, formally corresponds to the solution of a Fokker—Planck equatioffpfdr with constant
coefficientsA,; (¢’, t) andD;;(q', 1).

Thus, the starting point to develop an accurate and relighlas to construct an
auxiliary operatorL¥,, from which one can extract the correct momeatsand D;; of the
original equation by means of the properties given in the above sections. By using this
operator one would build a representation of $hinction in terms of a set of orthogonal
functions{¢(X, q)}, replacing the usual Fourier transform picture (2.13). Let us consider
the formal short-time solution (3.1), whose factbgp(q, 1)6(q — ¢') is transformed into
L}.p(q, tlg)é(g — q') with A;8 andD;;6 decomposed as (no summation convection here)

Ai(q,)8(q — q') = ai(q. t1g)i(q', 1)8(q — q')
D;j(q,1)8(q — q') = d;j(q.t1d)Bij(qd', )8 (g — ¢).

Then, relation (3.1) may be given as a functional picture of a new opetainty, ¢|q’) defined
as

/ 3 A / a / /

L}p(q.tlq) = o |:ai(q7 tlg)a;(q', 1) — B_qdij(q’ tlq)Bii(q, f)i| . (3.3)
i J

The functionsy; andd;; are fixed in order to contain in them the physically relevant functional

dependence og shown by the original coefficients. In this way, the equation

(3.2)

P, = elir@ild)g(q — ¢ (3.4)
may be understood as the formal solution of an auxiliary Fokker—Planck equation

P

5 = LipPe(a.7la". 0) (3.5)

wherer as well asg’ are treated as constant parameters. The notégiatg’) means that the
referred functions may depend on prepoint and postpoint varigbéeslg. Obviously, this set
of factorizations is only a guiding way to construct an auxiliary Fokker—Planck operator. The
resulting equation should be solved under the prescribed conditions of the original problem.
This is to say that boundary conditions and the asymptotic characteristic functional behaviours
of A; and D;; can be collected in thé representation through the new functiamsand
Bij. Thus, not only are the coefficients derivatives totally or partially included insthe
representation [28], but also their functional asymptotic behaviours may be included. The
set of factors provided through (3.2) generates, at mét N new coefficients/;; anda;,
in substitution to the originad; (¢, r) andD;; (¢, t) in (2.14) to obtain a generalized form of
this common short-time propagator. Note that if the trivial definitiens= 1, g;; = 1 and
a; = Ai(q',1),d;j = Djj(q',t) are used, from (3.5) we recover the usual propagator (2.14)
in unbounded spaces. In this case, under specified boundary conditions, the solution of (3.5)
gives a suitable form oP,, valid for small and finite time stepin bounded spaces.

A special ansatz for the auxiliary functions is provided by setfing= 1. Eacly;;(q, tq’)
will then coincide withD;; (¢', t). Therefore, in (3.5) the diffusion tensor is evaluated at source
points. Since the contribution of diffusion processes to time evolution is usually slower than
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convective effects, these definitions may be chosen for many problems of physical relevance.
Defining N new functionsy; such that all factorg\;§ are rewritten as

Ai(g,1)8(q — q') = ai(q', )ai(q, t1¢)8(q — q) (3.6)
the auxiliary problem is reduced to an ordinary Fokker—Planck equation for the operator

* a ~ / / ! 8
LFP = 9; |:az(q7t)az(Qat|q) Dlj(q’t)aqjil. (3-7)
Under this choice, (3.5) may be reduced to a simple solvable Fokker—Planck equation in a
new set ofN properly scaled coordinatés} in such a way that, = g/&;. The new drift
vector coincides withy; = a;(v) and the new constant diffusion coefficients are given by
dij = D;j(q',1)/(a;a;). Using the well known methods of solution one can extract from this
equation & representation as the limit

Sta—q) = Im sa—a") = Im_[ ola. 09" 1d" (3.9)

interms of orthogonal functiorig(q, 1)}, if this limit exits. The insertion of this representation
in (3.1) will give a new form forP,. However, the way to obtaiR, is just to solve (3.5) with
the initial conditions (¢ — ¢*) before proceeding to the limit* — q'.

This method has already been sucessfully applied in previous works related to the kinetic
equation appearing in plasma physics [22, 23]. To illustrate the procedure let us consider the
nonlinear Fokker—Planck equation for the dynamics of electrons in one component plasma,
which is quadratic in the distributiori for isotropic velocity space. The drift and diffusion
coefficients depend only on the radial spherical coordimatéollowing (3.6) they may be
factorized as [22]

A,(v,H8(v =) = [% —va (v, t)] D,, (v, H)é(v — V")
Dyy(v,)8(v — V') = Dy (v, )8(v — V)

wherea, (v, t|v') = (2/v —va (v, 1)). Thetermsx(v', ) = 2/v' — A, (V/, 1)/ D,, (V' 1)) /V,
as well asD,, (', t), are bounded and sufficiently smooth functions. Thus, the problem is
reduced to a radial Ornstein—Uhlenbeck process in spherical coordinates. (3.5) is solved under
reflecting conditions at the origim = 0. Note that the geometrical drift factor depending on
2/v has been kept in field variables. This dependence is an essential feature of the Fokker—
Planck equation in spherical coordinates for any D;;. By direct application of (3.1) the
auxiliary equation is solved in terms of Laguerre polynomials in [22] finding both transient
and steady states by numerical computation for any initial condjfjon

Note that the common propagator (2.14) containing the drift and diffusion coefficients
computed at source variables fails over the region on which these functions diverge. For
instance, consider the previous one-dimensional process for which(the- v) behaves as
2/q in the neighbourhood of the origin. This means that the deterministic force exerted on
a test particle in positiog’ >~ 0 will strongly drive it to a positiony > 0 with a non-zero
probability P. Looking at (2.14) one observes that for a particle;in~ 0 the propagator
P, vanishes for any finite becaused(q’) diverges. This would mean that the probability of
finding such a particle in positiap > 0 after timer would be zero, in clear contradiction with
the expected behaviour. This unphysical result has been solved by keeping the relevant factor
2/v in source variables.

On account of this example, it is worth emphasizing that under changes of variables the
geometrical induced drift has to be computed in field coordinates since they directly set up
the boundary conditions for the main problem. At the same time, note that if the convective

(3.9)
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functions A; contain explicitly the geometrical induced factof|¢/| (2.14) would not be
applicable for a finiter because of the singularity at the origin, as said before. Therefore,
if 1/|q'| is preserved in source variables, the essential property of smooth behaviour in the
small region for the forces is destroyed under such singularity. So it is desirable to directly
place these conflictive functional asymptotic dependences oé thpresentation, ensuring

the smooth functions to appear in source variables.

On the other hand, it must be emphasized that one of the main advantages of this picture
is the fact that after solving (3.5) all the properties (2.18)—(2.20) are fully satisfied Bjrise
also a solution of a Fokker—Planck equation.

This kind of auxiliary equation may be solved by reduction to an eigenvalue problem [1].
Since there are a great variety of analytical solutions of simple Fokker—Planck equations in the
literature, it is expected that a suitable choicexpfwould provide a convenient functioh,
applicable to the original equation.

In many physical systems of interest using curvilinear coordinates the common situations
depicted in previous paragraphs can be achieved by using the representation

[e%e} 13
sa-a) =0 x | [1] Ju(uq) 1 (g’ 0 (3.10)
gq) Jo Lag

for the radial contribution td(g — ¢’) in terms of Bessel functions [42—-44)], of order

. The functiong(q) is chosen in accordance with the factorizations (3.2) defidifg.
Particular attention deserves the reduction of (2.12) v afimensional Ornstein—Uhlenbeck
process [1,45] iy, = —yi(q', t)gx Which solves the problem even for bounded spaces. In
other words, the selection of the auxiliary equation does not imply a practical limitation on the
determination ofP, (q, q’|t). Moreover, the fitness of the propagator has to be made in such
a way that the resulting auxiliary problem drastically simplifies all the calculations by using
well known analytical results [46-51].

At this point it must be remarked that this procedure may lead to a formal solBtion
validated for small and finite evolution time, even in the case of singular diffusion matrix for
which (2.14) fails, see the alternate method given in [38]. If the determimattvanishes it
is possible to derive another expression replacing the Gaussian (2.14) by a convenient choice
of factorization functiong;; that would eventually provide an analytical solvable functiyn
from (3.5).

4. Numerical evaluation

The time evolution of the initial distributioyi(q, 0) = fois provided through (1.1). For atotal
time of evolution, = nt the functionf(q, 1, + ) = f"*!is given as the iterative evolution
equation

e = /D P.(q,q'It,) f"(gHd"q'. (4.1)

where the integration can be carried out using any of the well known numerical schemes.
However, it is convenient to define a transition mat@% which determinesf”*! from f.

For time-independem and D the matrix@" has to be computed only at the first time step.

A simple rectangle rule for numerical integration scheme leads to a discrete transition matrix
whose element®);; are understood as a transition probability process in discrete variables.
Once theN points discretized spatial grig;} with length Ag is fixed, this matrix can be
constructed by a simple procedure as (in the one-dimensional case)

0" = Po(q qlnt)—2
ii = I<\qi,q;|nt .
/ A

(4.2)
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whereP; (g, ¢’|t) is computed in = nt, g = ¢; andg’ = ¢;. The numerical functio, (;)
has to be chosen to ensure the numerical normalizatidh efich that

D Pelaigiinag =3 0 =1 (4.3)

which also ensures the constant normdf and its positiveness at any timg If P, is
normalized to unity, one expects (j) not to deviate too much from this value. This numerical
value may be used to check the accuracy of the numerical integration scheme. For this reason,
N, only corrects the truncation numerical errors and makes the discrete and continuous schemes
equivalent. In the limit — 0, eachQ7; approach thé Kronecker functiors;; in agreement

with (2.19) for the continuous case. By increasing the value,dhe number of non-zero
elements of the transition matrix increases. Thereby this matrix will have atNeash-zero
elements);; = 1/Aq for t = 0 andN (2k + 1) non-null coefficients for a finite time step.

is fixed after computing the number of non-vanishing elements providing a finite vaRe of

For the transition from poiry; to ¢;, the index; takes the values laying frofiy,;, = i — k to

Jmax = i +k. This reduces the computation time for the evaluation of (4.1) as

J=Jmax
fin+l= Z Q:l]f]” (44)

J=Jmin

Because all elements @f" are bounded and satisfy (4.3), any initial distribution functfgn
yields the numerical positive functiofi* which also behaves as a distribution function in the
same sense g%. For this reason, the integral method becomes numerically stable under any
selection of discretization factotsand Ag.

In relation to the convergence of the numerical solution, note that formal expression (3.1)
for the auxiliaryL?., operates ovef (q, ¢) through a propagator whose dependence oan
be essentially described ag\It exp[-K?/t]. Thus, for the functionak = K (q; ¢, t) # 0
the term f L%.,]" P, originates a set of factors expk?/]/[t" /7], identified with the rest
O(z™). All these factors decay to zero faster than any powar.ofhe numerical scheme is
then expected to approach any transient solution under a more precise functional form than the
one provided by finite-difference schemes. In many physical systems there is more than one
conserved quantity during time evolution. In fact, there may be three collisional invariants—
numbermy, momentumP and energy’—as occurs in the Fokker—Planck equation in plasma
physics. To preserve conservation laws or the predicted evolution of the distribution moments,
one may again use the non-uniqueness form,db improve the matrixQ” by adding suitable
second-order corrections into its characteristic mean and variance. A way to achieve this
goal is to perform the effective drift, say for exampi¢g’) = A(g;) which appears in the
mean of (2.14), using a recursive parametg(r?). This parameter can be computationally
adjusted by direct evaluation or by a recursion procedure such as

Wn = 1pn—l + C(T - Tn) (45)

which minimizes the difference between exact momErdand the numerical, in the nth
iteration forC # 0. The initial valueyy may be zero iy, is added toA, oryg = 1if A

is moved toAy, as shown in [22,23]. Note that this procedure leads to the contribution of
terms of higher order thanadded to any short-time propagator, meaning that the appropriate
Fokker—Planck equation can be reproduced from it ([16]). This contribution in no way destroys
the consistency with the original problem if it is ensured tatis a correction of ordet™

with m > 2.
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Figure 1. Ornstein—Uhlenbeck process {0, c0). (a) First five iterations with time step
= 0,05 = /10 andAg = %1- Dots mean steady analytical solutionb) Evolution of
integral solutionf; in time steps: = 100, 400, 800 and 1000.

5. Examples

This section illustrates the above algorithm with some representative problems (for physical
applications related to plasma physics see [22, 23]).

As a first example, an Ornstein—Uhlenbeck process is treated in the ini@rea) under
reflecting boundary conditions@at= 0. Secondly, a nonlinear Fokker—Planck equation which
is quadratic onf is solved. Both numerical integral solutions are compared with analytical
and Crank—Nicholson [52, 53] finite-difference solutions.

For the Ornstein—Uhlenbeck case, the drift and diffusion coefficients ate-y v (v > 0)
and D, wherey andD are real positive constants. Under reflecting boundary conditions, the
probability current/ for the exact propagatd? vanishes at = 0 and forv — oo, i.e.

9 .
J:AP—a—DP=O if v—>0 or v —> 00 (5.1)
v

which ensures the number conservation. The analytical transition probability (for
y=1D=1)

P, t)'t) 1 {e’w +efw} 62

v, v = y v .
VY

e=e 0 y=1-2 (5.3)

which provides the time evolution of any initial distributigig(v) and the steady-state Gaussian
solutionf, = +/2/m exp(—v?/2). To solve this problem through a numerical integral approach
the short-time propagator (2.14) becomes useless since it is not normalized to @djtydn

The difficulty is avoided if the auxiliary Fokker—Planck equation (3.5) is solved by setting
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Figure 2. Numerical integralf; (a) and exactf, (b) solutions of non-Markovian Fokker—Planck
equation (5.5) fory = 0. The total evolution time is = 1 the time step being = 0.1. The
dashed line represents the initial histogram-type distribution function. Frathesd @) show

the distribution tails behaviours for finite-differengg (circles), integralf; (marks) and exacf,

(line) solutions. Last two frames give the moments evolutions which coincide with the exact ones
within an error of order-10"4%.

AW)s(v —v') = A(W)é(v — v'), preserving the reflecting boundary condition. The solution
for P, reads [14,48]
e—A(v—v’—At/Z)/Z (0

’ _ )2 _ )2 |A | v
P(v,, V)= —————— x[e = +e & |—-—e'erfc
4t 2

v+v + At
NG

where erfcl] is the complementary error function [44] add= —v’. In spite of (5.4) showing

a more involved form than the real propagator for this simple problem, it can be used to solve
any related Fokker—Planck equation under the same boundary conditions. The numerical
solution is shown in figure 1 with an initial histogram-type distributin The behaviour of

the numerical integral solution is the same as observed for the analytatany point of the
spatial grid. The relaxation timg = 1 sets the timescale for which the first momenof

f decays a factor /B. In the numerical integral scheme a relatively large time stepy

|
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Figure 2. (Continued)

be used. In fact, the method works better for largeot exceeding, /3. This feature means
that the integral scheme provides the stationary solution in a very small number of iterations,
although the number of non-zero element®iincreases notably.

The second problem solved in this section refers to a kind of nonlinear Fokker—Planck
equation which appears for the macroscopic description of generalized Langevin equations
[54,55]. For such stochastic representations, under the assumption of coloured noise and
induced memory effects for random variables [56-58] a Fokker—Planck equation may be
derived for macroscopic variables. In this equation the effective drift téradepends on
the distributionf itself, providing a non-Markovian picture of such processes. In this case,
the propagatoP generally depends on the full history of the system through the ingiahd,
only sometimes does a steady-state distribution exits independent of initial conditions. In this
sense, the equation

A S
v aq[ Yq —rf ano}f(q,t) (5.5)

with constant diffusiorD = Dy represents a modified Ornstein—Uhlenbeck process including
a self-consistent force-Af. This problem can be solved analytically. Following [56], the
integral expression similar to the Hopf—Cole transform (in dimensionless formiyits: 1
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Figure 3. Integral f; (a) and exactf, (b) solutions for (5.5) fory = 1, evolution timer = 2 and

7 = 0.01 in 200 time steps. Far = 0.1 the evolution is reduced to only 20 time steps providing
practically the same figures. Framepdnd @) give the numerical momen#3, and7;,. Analytical
moments differ less than 16%.

andx = 1)

0(@q,t) = eXp[Zq2+/q fu, t)du}
2 —oo
8 Y 2 (56)
flg. 1) = % InN[Q(g, 1)e™27]
q

leads to a new Fokker—Planck equationdnassociated with a non-normalizable Ornstein—
Uhlenbeck process with inverted potential= yv [1]
a0 9

d
0=t - ous

whose Green functio®,, (¢, t|g’, 0) is obtained from the the ordinary solutighrelative to

a simple Ornstein—Uhlenbeck process by changirigto —y. The functionQ(q, t) is then
derived fromQ(q, 0) throughP,,. Thus, after some algebra, the solution to (5.5) for any real
y reads

£ = Yz f_oooo(q/ — zq)eG(li,q’)dq/
fah =57 [ ebaadg’

(5.8)



Short-time propagators for nonlinear Fokker—Planck equations 3693

12 — 0.15

T(t)
p(t)

r 0.1

0.05

-0.05

-0.1

-0.15

- -025

05 \\\‘\\\‘\\\‘\\\‘ _03 \\\‘\\\‘\\\‘\\\‘
0 2 4 6 8 0 2 4 6 8

t t

Figure 3. (Continued)

wherez = €. The integral kerneG (¢, ¢’) is given by

, 7 Y4q —zq
G(q,q)=f_oo f(u, 0)du — 12 (5.9)

For a positivey in the limit of large values of time (5.8) becomes independent of the initial
fo giving the stationary solution

2y eva’/2
fi@) == . (5.10)
T (e+1/(e— D +erfig,/3)

For an initial histogram-type distributiofy the problem has been solved using a short-time
propagatorP; derived from the identification

A(q.1)8(q —q") = —[yq + f(q',D]18(qa — q). (5.11)

The associated auxiliary Fokker—Planck equation (3.5) is again related to the linear Ornstein—
Uhlenbeck case with convective parametes —y g —ag for constantig. Thus, the short-time
propagatorP; is then a simple Gaussian with megugiven by

g=q'e""+fg,nd-e")/y (5.12)
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and variance sucho? = 2D/y (1—exp(—2y1)). Note that this expression for the propagator

is reduced to the usual one-dimensional (2.14) for small valugs,ofhich is also an accurate
propagator for this problem if is no larger than 10% of the relaxation time= 1/y. Note

that if P} is used for anyt, even forr — oo, thenth advanced functiorf” is always a well
behaved function in the theory of distributions sense. The numerical stability, figure 3, of the
advanced scheme is then ensured even for very large valuessfcan be seen through the
moments evolution—figure 8 and @)—reaching the stationary expected behaviour.

For y = 0 (figure 2) no stationary solution exits. However, the distributfag, ¢) is
advanced untit = 1 in only ten time steps in a very accurate approximation, as can be shown
through the analysis of the distribution tails in framegdnd (). For large values of the
integral solutionf; behaves better than the finite-difference solutfpnlt is also shown that
moments evolution in the integral scheme is quite close to the exact one.
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